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Abstract: Integrated forecasting systems for precipitation, streamflow, and floodplain inundation 19 

are of critical importance in mitigating the impacts of destructive floods caused by extreme weather 20 

events. However, the skills of streamflow and floodplain inundation forecasts derived from various 21 

Quantitative Precipitation Forecast (QPF) require a greater level of understanding. In this study, a 22 

set of QPF developed by the National Weather Service (NWS) were used to drive a flood modeling 23 

system obtained through offli ne coupling of a physics-based distributed hydrological model, the 24 

Distributed Hydrology Soil and Vegetation Model (DHSVM), and a hydrodynamic model, the 25 

Two-dimensional Runoff Inundation Toolkit for Operational Needs (TRITON). This flood 26 

modeling system was used to produce forecasts of streamflow and floodplain inundation maps 27 

during three major flood events in the Brays Bayou Watershed (Houston, Texas, USA) for a range 28 

of QPF durations (672 h). Then, to investigate the effects of increasing QPF durations on the 29 

forecasts, the forecasting skills of precipitation, streamflow, and floodplain inundation were 30 

quantified.  The results  show that: 1) QPF skills for more intense and sustained events such as 31 

hurricanes and tropical storms are higher than for shorter, less intense events; 2) while QPF and 32 

streamflow forecasting skills decrease as QPF durations increase, inundation forecasts under 33 

longer QPF durations (24 or 72 h) show higher skills; 3) extending the maximum QPF duration in 34 

operational hydrologic modeling from 24 h (under normal circumstances) to 72 h (for extreme 35 

events) may increase the skills of long lead time forecasts for large-scale events like Hurricane 36 

Harvey. 37 

 38 

Keywords: flood forecasting skill, extreme weather events, quantitative precipitation forecast 39 

(QPF), QPF duration, inundation mapping  40 
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1. Introduction 41 

Extreme precipitation events are occurring with greater frequency and intensity due to 42 

climate change (Lehmann et al. 2015), resulting in increasingly disastrous floods. Floods can cause 43 

massive destruction in a short period of time, but are challenging to forecast given the complex 44 

relationships between meteorological and hydrologic systems. Accurate flood predictions with 45 

sufficiently long lead times are desired to support emergency managers and first responders in 46 

determining a best strategy for fast action and evacuation (Georgakakos and Hudlow, 1984; 47 

Selvanathan et al. 2018). 48 

The accuracy of flood forecasts depends on the cascading prediction skills across 49 

precipitation, streamflow, and floodplain inundation. With the exception of snowmelt-driven 50 

floods (Fang et al., 2014), the main source of uncertainty in flood forecasting systems is 51 

precipitation. Other secondary factors include initial soil moisture conditions and model structural 52 

uncertainty (Zappa et al. 2011). The skills of precipitation forecasts may vary with storm drivers, 53 

duration, and intensity. For example, Sikder et al. (2019) reported that hurricane-induced storms 54 

are more challenging to forecast than the less intense and more frequent winter frontal systems. 55 

Considering that the most destructive floods are usually brought on by hurricanes (such as 56 

Hurricane Harvey in 2017; Fernandez-Rivera et al. 2019; Kao et al. 2019), the accuracy of 57 

precipitation forecasts during these storms is particularly important (Droegemeier et al. 2000; Ko 58 

et al. 2020; Marchok et al. 2007; Sikder et al. 2019). 59 

Moreover, the errors from precipitation forecasts may be exacerbated in streamflow 60 

predictions (Cloke and Pappenberger 2009; Cluckie and Xuan 2008; Rossa et al. 2011; Van 61 

Steenbergen and Willems 2014) due to the uncertainties associated with hydrologic model 62 

structures, parameterizations, inputs, and initial conditions (Cloke and Pappenberger 2009; Zappa 63 
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et al. 2011; Demargne et al. 2014; Jain et al. 2018). While the relationships between predicted 64 

precipitation and streamflow have been well recognized (Parodi and Ferraris 2004; Jung and 65 

Merwade 2015), their relative forecasting skillsðand how the uncertainties propagateðwarrant 66 

further investigation. Considering the declining tendency of precipitation forecast skills as lead-67 

time increases, Adams and Dymond (2019) questioned the benefits of applying longer duration 68 

QPF in streamflow forecast. Therefore, the effects of QPF duration on the best practices of 69 

streamflow forecasts should not be overlooked (Gourley and Vieux 2005; Ibbitt et al. 2005; Li et 70 

al. 2017). 71 

The skills of floodplain inundation forecasts associated with varying QPF durations are 72 

also not well understood. The 2D hydrodynamic models are commonly used for floodplain 73 

inundation forecasts for emergency management (Apel et al., 2009; Bhola et al., 2018), although 74 

1D models, and other methods like Height Above Nearest Drainage (HAND), are also adopted in 75 

practice (Adams et al., 2018; Johnson et al., 2019). Accurate hydrodynamic simulations typically 76 

demand high-resolution models (Merwade et al. 2008). Since inundation forecasts are much more 77 

computationally expensive than streamflow forecasts, they are usually produced less frequently 78 

during extreme events (Bhola et al. 2018; Jain et al. 2018). Efforts have been made to resolve the 79 

trade-off between modeling accuracy and computational burden in inundation forecasting 80 

(Schumann et al., 2013; Sanders and Schubert, 2019). Recently, an open-source 2D hydrodynamic 81 

modelðthe Two-dimensional Runoff Inundation Toolkit for Operational Needs (TRITON; 82 

Morales-Hernández et al. 2020 and 2021)ðwas developed to leverage the multi-GPU architecture 83 

of modern high-performance computers (HPC) for accelerated inundation modeling. Nevertheless, 84 

given the high computing cost, it is not realistic to expect that one may simulate all possible 85 

ensemble inundation scenarios (which is often done for ensemble precipitation and streamflow 86 
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forecasting). Overall, the skills of inundation forecasting methods need to be better understood in 87 

order to prioritize the limited computing resources during operation. 88 

The objectives of this study are to explore integrated flood forecasting skills and their 89 

relationships to QPF duration, as well as to identify optimal flood forecasting strategies. Here, the 90 

ñQPF durationò refers to the maximum length of QPF used in the subsequent hydrologic modeling, 91 

which can range from 6 hours to the full length of the precipitation forecast lead time. ñLead timeò 92 

is defined as the time range since a forecast is made to the forecasted future timing (Georgakakos 93 

and Hudlow, 1984). Specifically, we address the following questions in this research: 94 

1) How do the errors of forecasted precipitation propagate throughout the flood forecasting 95 

system during different types of extreme weather events? 96 

2) What are the skills of forecasted precipitation, streamflow, and floodplain inundation 97 

across different QPF durations? 98 

3) Should longer-duration forecasted precipitation be curtailed when making streamflow 99 

and floodplain inundation predictions? How does the timing of floodplain inundation 100 

forecasts initiation affect the forecasting skill? 101 

4) Do flood forecasting skills differ between different types of weather events as defined by 102 

their rainfall intensities and durations? 103 

The remainder of this paper is organized as follows: In Section 2, the study area and 104 

selected flood events are introduced. Section 3 describes the methods used in this study, including 105 

models to produce the forecasts and metrics used to evaluate forecasting skills. In Section 4, the 106 

skills of forecasted precipitation, streamflow, and floodplain inundation under multiple QPF 107 

durations are compared. In Section 5, issues related to the varying forecasting skills are discussed. 108 

Lastly, the conclusions are presented in Section 6. 109 
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2. Study area and selected flood events 110 

a. Study area 111 

The Brays Bayou Watershed is located in southwest Houston (mostly in Harris County), 112 

Texas, USA, as shown in Fig. 1 (29.37 29.45°N, 95.1695.41°W). According to the Harris County 113 

Flood Control District (HCFCD), the drainage area of the watershed is 329 km2. The watershed 114 

slopes downward gradually from west to east as the watershed approaches the coast. The 115 

climatology of the watershed is generally wet and subtropical, characterized by humid, warm 116 

summers and mild winters. The average rainfall is 1415 mm per year, with July and August being 117 

the wettest months (on average). The primary land cover type is urban (95.9% urbanized; USGS, 118 

2014) and the primary soil type is clay, which has a very low hydraulic conductivity. Thus, water 119 

does not easily infiltrate into the soil. These topographical, climatic, and geographical 120 

characteristics make the watershed prone to flooding. 121 

 122 
Fig. 1. Location (left) and map (right) of the study area, including Digital Elevation Model (DEM) 123 
information and locations of USGS streamflow gages. 124 

b. Selected flood events 125 

The Brays Bayou Watershed has experienced multiple severe flood events in the last few 126 

decades. Three recent major flood events with different driving storm types were considered in 127 
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this study: the Memorial Day Flood (May 25 26, 2015), the Tax Day Flood (April 17 18, 2016), 128 

and Hurricane Harvey (August 25 31, 2017). Both the Memorial Day Flood and the Tax Day 129 

Flood events were caused by short-term convective storms (Furl et al., 2018; Nielsen and 130 

Schumacher, 2020) which brought in 226 mm and 243 mm of rainfall during 9 h and 24 h periods. 131 

The Hurricane Harvey flood event was caused by a slow-moving Category 4 hurricane (Kao et al., 132 

2019) which brought in 893 mm of rainfall during a 108 h period. 133 

3. Methods and data 134 

a. Precipitation observation and forecasts 135 

Both observed and forecasted precipitation data were used in this study. The National 136 

Center for Environmental Prediction (NCEP) Stage IV (ST4) Quantitative Precipitation Estimates 137 

(QPE; Lin 2011; Lin and Mitchell 2005) were considered as the ñground truthò used to evaluate 138 

the accuracy of forecasted precipitationðand also to support hydrologic model calibration and 139 

validation. The ST4 data merges raw radar-based estimates with automatic rainfall gage 140 

observations and is further quality-controlled by National Weather Service (NWS) River 141 

Forecasting Centers (RFCs). The ST4 data are available at an hourly time step with a 4-km spatial 142 

grid resolution from 2002 to the present. The values are produced in near-real time as they become 143 

available, typically within one hour after receiving data from the RFCs. Given its high quality, 144 

ST4 has been used in many studies to represent observed precipitation (Ashouri et al. 2015; Kao 145 

et al. 2019; Nelson et al. 2016; Sapiano and Arkin 2009). 146 

The NWS Weather Prediction Centerôs (WPC) Quantitative Precipitation Forecasts (QPF; 147 

https://www.wpc.ncep.noaa.gov/html/fam2.shtml#qpf) were used for forecasted precipitation data. 148 

Using a suite of operational models, WPC researchers leverage their experience to estimate the 149 

probable amount of precipitation across various future durations. The QPF products are provided 150 



8 

 

four times a day at 6 h temporal and 5 km / 2.5 km spatial resolutions for a maximum of a 7-day 151 

lead time. Specifically, QPF is manually created for 6-hour periods on Days 1, 2 and 3; while on 152 

Days 4-7, QPF is created for 24-hour periods and then equally distributed to 6- hour periods. 153 

Overall, both ST4 and QPF were processed from May 23 to May 29, 2015 for the Memorial Day 154 

Flood, from April 15 to April 21, 2016 for the Tax Day Flood, and August 21 to September 3, 155 

2017 for Hurricane Harvey. 156 

b. DHSVM streamflow simulation 157 

A physically based hydrological model, the Distributed Hydrology Soil and Vegetation 158 

Model (DHSVM, Wigmosta et al. 1994), was employed in this study to simulate streamflow in the 159 

Brays Bayou Watershed. DHSVM is an open-source model that couples full water and energy 160 

balances to calculate the hydrologic processes at high spatial and temporal resolutions. The model 161 

has been revised with parameters to characterize the hydrological processes in urban areas (Cuo et 162 

al. 2008), and thus is adequate for flood simulation in watersheds with urban land covers (Zhao et 163 

al. 2016; Shao et al. 2020; Li et al. 2020). In this study, the model was established with a spatial 164 

resolution of 20 m and a temporal resolution of 3 h. All input data are summarized in Error! 165 

Reference source not found.. Driven by ST4 and validated by observed streamflow, the DHSVM 166 

model parameters were calibrated (as described in Appendix A, Text 1 and Fig. A.1). The DHSVM 167 

performance of the three selected flood events is shown in Fig. 2, and are considered satisfactory 168 

for the purposes of this study. 169 

Table 1 170 

Summary of DHSVM input data 171 

Type of Data Source Spatial Resolution 

Digital elevation model 

(1/3 arc-second, ~10m) 

USGS National Elevation 

Dataset (Sugarbaker et al. 2017) 
Resampled to 20 m 
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Soil type 
USDA NRCS SSURGO 

Database (Nauman et al. 2018) 
Resampled to 20 m 

Land use land cover 

(status of 2011) 

USGS National Land Cover 

Database (USGS 2014) 
Resampled to 20 m 

Observed precipitation 
NCEP Stage IV Quantitative 

Precipitation Estimates (ST4)  
4 km 

Forecasted precipitation 
WPC Quantitative Precipitation 

Forecasts (QPF) 

5 km (in 2015 and 

2016) 

2.5 km (in 2017) 

Additional meteorological 

forcing data (other than 

precipitation) 

North America Land Data 

Assimilation System (NLDAS; 

Xia et al. 2012) 

1 km, averaged 

over the watershed 

 172 

 173 
Fig. 2. Evaluation of DHSVM flow simulations at gage 08075000 across the three storm events of 174 

interest: (a) the Memorial Day Flood, (b) the Tax Day Flood, and (c) Hurricane Harvey. 175 

Further, QPF was utilized as precipitation inputs for simulating forecasted streamflow via 176 

DHSVM. While intuitively one may expect to simply include QPF across all durations (up to 7 177 

days) in hydrologic modeling, in practice RFCs utilized QPF with a default duration (typically 24 178 

or 48 h) under normal circumstances in their operational streamflow forecasting (i.e., zero 179 

precipitation after the default duration). In the case of the West Gulf River Forecast Center 180 

(WGRFC), the QPF webpage (https://www.weather.gov/wgrfc/wgrfcqpfpage) states: ñIn general, 181 

the first 24 hours of QPF is used as input in the creation of river forecasts; however, dependent 182 

on specific weather events, up to the entire 72 hours may be used.ò The 1ï3 day QPF is then 183 

utilized by WGRFC to create the 5-day Significant Flood Outlook product. 184 

https://www.weather.gov/wgrfc/wgrfcqpfpage
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Although the rationale of this practice is not specifically explained, there is a notable trade-185 

off between forecast duration and accuracy. Given the rapidly decreasing skills of QPF in longer 186 

QPF durations (Cuo et al. 2011a; Seo et al. 2018a), the inclusion of medium-range QPF may lead 187 

to worse streamflow forecasting skills (Adams and Dymond 2019). However, longer lead time 188 

warnings (e.g., 1 2 days before the event) are useful for emergency responders and infrastructure 189 

operators (Golding 2009; Li et al. 2017; Parker et al. 2009). For a long-term event like Hurricane 190 

Harvey, there can be value in using longer duration QPF, even if they are less accurate. For each 191 

event, we tested and compared different maximum QPF durations from 6 h to 72 h for streamflow 192 

forecasts. In other words, these additional DHSVM simulations can help us understand the impact 193 

of increasing maximum QPF durations on streamflow forecasting skills and the potential benefits. 194 

A summary of all DHSVM simulations is provided in Table 2. For each flood event, a base 195 

simulation driven by ST4 was conducted. Then ST4 was replaced with QPF produced at different 196 

start times and with different QPF durations to simulate forecasted streamflow.  197 

Table 2 198 

Summary of all DHSVM simulations 199 

Event Names & 

Time 

(YYYYMMDD _HH) 

Source of 

Precipitation 

QPF Start 

time 

Maximum QPF 

Length in DHSVM 

Simulation (hours) 

Number of DHSVM 

Simulations 

Memorial Day Flood 

(20150523_00ï

20150529_23) 

1 set of ST4  -- 1 

ST4 and 28 

sets of QPF*  

(20150523_00, 

20150523_06, 

é, 

20150529_18) 

12 max. QPF 

lengths 

(6, 12, 18, 24, 30, 

36, 42, 48, 54, 60, 

66, 72) 

336  

(=28×12) 

Tax Day Flood 

(20160415_00ï

20160421_23) 

1 set of ST4  -- 1 

ST4 and 28 

sets of QPF 

 

(20160415_00, 

20160415_06, 

é, 

20160421_18) 

12 max. QPF 

lengths 

(6, 12, 18, 24, 30, 

36, 42, 48, 54, 60, 

66, 72) 

336  

(=28×12) 

1 set of ST4  -- 1 
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Hurricane Harvey, 

(20170821_00ï

20170903_23) 

56 sets of 

QPF 

 

(20170821_00, 

20170821_06,  

é, 

20170903_18) 

12 max. QPF 

lengths 

(6, 12, 18, 24, 30, 

36, 42, 48, 54, 60, 

66, 72) 

672 

 (=56×12) 

Note: The QPF forecasts are created four times a day (00, 06, 12, 18 hours), labeled by YYYYMMDD_HH 200 

c. TRITON inundation modeling 201 

A multi-GPU open source 2D hydraulic model, TRITON (Morales-Hernández et al. 2020 202 

and 2021), was employed in this study to simulate surface inundation driven by the forecasted 203 

streamflow conditions. TRITON solves the full 2D shallow water equations with source terms 204 

using an explicit numerical scheme. The model is designed for modern HPC and can leverage 205 

multiple CPUs or GPUs to largely accelerate hydrodynamic simulations.  206 

The TRITON model was selected in this study (instead of the simplified modelsðdiffusive 207 

and quasi-inertial) based on two considerations. First, spatially distributed and physics-based 208 

models are essential for obtaining acceptable results (in terms of accuracy and stability) for 209 

rainfall-runoff problems (Costabile et al., 2013; Costabile et al., 2015; Caviedes et al., 2020). 210 

TRITON is not only computationally efficient, but also has proven to work under any flow 211 

conditions. Second, TRITON provides reasonable resultsðwith minimal constraintsðwhen 212 

simulating an urbanized watershed with highly variable land surface conditions. Moreover, a main 213 

advantage of TRITON is the use of the DEM as the computational mesh, such that the user does 214 

not have to create a mesh for each case. This is important because the creation of an efficient 215 

meshðsuch as an unstructured triangular mesh, a quad-tree mesh or something similar (Ferraro, 216 

et al., 2020; Costabile and Costanzo, 2021)ðis both time consuming and requires modeling 217 

expertise. Furthermore, the data exchange between subdomains is crucial when having an 218 

unstructured mesh, and requires algorithms that could directly impact the performance.  219 
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The performance portability for multiple GPUs is ensured, provided that the supercomputer 220 

contains NVDIA -GPUs in its hardware. The speed of the calculations will only depend on the 221 

capabilities of the graphic card. Given that more and more supercomputers utilize GPU-like 222 

accelerators, this proposed methodology can be applied elsewhere. 223 

The TRITON setup for the Brays Bayou Watershed included a 10-m resolution DEM 224 

(Sugarbaker et al. 2017) and a spatially varied Manningôs roughness coefficient from Dullo et al. 225 

(2021). The TRITON computational domain extends downstream beyond the watershed to 226 

minimize any backwater effects. A similar process used by Gangrade et al. (2019) was followed 227 

to convert the simulated DHSVM streamflow into corresponding TRITON inputs. The input 228 

DHSVM streamflow hydrographs extended for 10 days and captured the peak streamflow around 229 

the end of the fifth day. The TRITON outputs were saved at a 30-min timestep across the entire 230 

computational domain. The simulations were conducted using the Summit supercomputer 231 

managed by the Oak Ridge Leadership Computing Facility (https://www.olcf.ornl.gov/summit/). 232 

Further details on the TRITON setup and validation are provided in Appendix A, text 2. 233 

Even with the enhanced computing speed, it is still not feasible to conduct TRITON 234 

simulations for all ensemble DHSVM streamflow scenarios reported in Table 2. Lower frequency 235 

is also an issue that decision makers are to be faced with when carrying out inundation forecasts 236 

in practice, as compared to the frequency in streamflow forecasts. Therefore, TRITON scenarios 237 

were designed to investigate the performance of forecasts made at different stages of the flood 238 

events under different QPF durations. Forecasts were made for each of the three events at three 239 

separate stages: at the onset of flooding, around the time of the flood peak, and during the recession 240 

period. For the Memorial Day flood and the Tax Day flood, an extra scenario was tested to see 241 

whether forecasts made slightly (i.e., 6 h) before the rainfall events achieve similar forecast skill 242 
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as the forecasts made at the beginning (which could add additional time for emergency actions). 243 

Meanwhile, because Hurricane Harvey lasted much longerðand the rainfall did not reach its peak 244 

until about 2 days laterðwe did not see much difference in the forecasted rainfall totals (i.e., 245 

between forecasts made 6 h earlier, or 6 h later. Therefore, five scenarios were set for Hurricane 246 

Harvey at an interval of 12 hðthree for the prementioned stages, and two additional scenarios 247 

distributed into the rising limb and recession limb periods. A summary of all of the TRITON 248 

simulations is provided in Table 3. For each flood event, a base TRITON simulation was conducted 249 

using the ST4-driven DHSVM streamflow. Since the timeseries of the actual inundation is 250 

unavailable, the base simulation was used as a proxy. Then, the forecasted inundations were 251 

produced, driven by different QPF-driven streamflow forecasts. To provide an outlook for the 252 

whole event and to capture the maximum inundation extent, a single streamflow forecast with a 253 

long lead time (5-day) was adopted to drive an inundation forecast. Finally, skills of these 254 

inundation forecasts were evaluated.  255 

Table 3 256 

Summary of all TRITON simulations 257 

Event Names & Time 

(YYYYMMDDHH)  
Source of 

Precipitation 
Forecast Start Time 

(YYYYMMDD_HH)  

Maximum QPF 

length in DHSVM 

simulation (hours) 

Number of 

TRITON 

simulations 

(Total 41) 

Memorial Day Flood 

(2015052118ï

2015053112) 

1 set of ST4 -- -- 1 

QPF 

20150524_06 (72) 1 

20150525_12 (12, 24) 2 

20150525_18 (12, 24, 72) 3 

20150526_06 (12, 24, 72) 3 

20150527_12 (12, 24) 2 

Tax Day Flood 

(2016041400ï

2016042318) 

1 set of ST4 -- -- 1 

QPF 

20160416_12 (72) 1 

20160417_12 (12, 24, 72) 3 

20160417_18 (12, 24, 72) 3 

20160418_12 (12, 24, 72) 3 
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20160419_12 (12, 24) 2 

Hurricane Harvey, 

(2017082300ï

2017090118) 

1 set of ST4 -- -- 1 

QPF 

20170825_12 (12, 24, 72) 3 

20170826_12 (12, 24, 72) 3 

20170827_12 (12, 24, 72) 3 

20170828_12 (12, 24, 72) 3 

20170829_12 (12, 24, 72) 3 

Note: The QPF forecasts are created four times a day (00, 06, 12, 18 hours), labeled by YYYYMMDD_HH 258 

d. Forecasting skill metrics 259 

The overall workflow to evaluate the forecasting skills of the flood forecasting system is 260 

shown in Fig. 3. For each assessment, skill score calculations were conducted to demonstrate the 261 

uncertainty and skill of each forecast throughout the flood forecasting process. 262 

 263 
Fig. 3. Schematic overview of precipitation, streamflow, and inundation forecast evaluation 264 

1) Precipitation 265 

In this study, the QPF were first assessed to determine their spatial and temporal accuracy 266 

with respect to ST4. Given the different spatial resolutions between QPF and ST4, each QPF grid 267 

cell was compared with the closest ST4 grid cell. Additionally, the hourly ST4 data was aggregated 268 

to a 6-h time step in order to be comparable with the QPF. The skill scores for precipitation 269 

forecasts were adopted from Seo et al. (2018b), and include the hit rate (HR), the false alarm rate 270 
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(FAR), and frequency bias (FB). Then, the Critical Success Index (CSI) was used as an indicator 271 

of the overall performance of the forecasts in perspective of spatial and temporal accuracy of 272 

rainfall (see details in Table A.2). 273 

In addition, the accuracy with regard to total rainfall and peak timing are also important 274 

since it directly affects the performances of streamflow and inundation forecasts. The relative bias 275 

(RB) of total precipitation over the watershed, and the precipitation peak timing bias (PPTB), are 276 

also examined for individual QPF made at different times during the events. Specifically, the RB 277 

of the total precipitation is defined as follows: 278 

Ὑὄ ὕ Ὂ ὕ 279 

in which, ὕ and Ὂ refer to observed and forecasted precipitation rates over the watershed at the 280 

i th time interval (6 h); notation T is the number of time intervals before the forecast; and N is the 281 

number of time steps until the end of the event.     282 

2) Streamflow  283 

DHSVM simulations were used as substitutes for the WGRFC streamflow forecasts in this 284 

study, since WGRFC streamflow forecasts are only available for specific QPF durations. The 285 

simulations were carried out to mimic the five-day forecasts produced by the WGRFC (using the 286 

CHPS-FEWS model, hereafter referred to as RFC forecasts); specifically, QPF of various 287 

durations was incorporated in the hydrologic modeling scenarios. Skills of streamflow forecasts 288 

are to be evaluated in two contexts. The first context is the skill of an instantaneous (or ñreal-timeò) 289 

streamflow forecast system. The DHSVM simulations based on QPF with each particular duration 290 

(Table 2) were synthesized to produce hydrographs composed fully of forecasts with the same 291 
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duration (see details in Appendix A, text 3), which allows for the determination of the overall 292 

forecasting skills of an instantaneous streamflow forecasting system across the events. In the 293 

instantaneous streamflow system, the streamflow forecasts are updated every interval of the QPF 294 

duration.  295 

The other one is the skill of single streamflow forecasts with a long lead time. The RFC's 296 

operational streamflow forecasts are usually made with a lead time much longer than the QPF 297 

duration they adopt. At the WGRFC, the lead time of the streamflow forecasts is 5 days, no matter 298 

how frequently the forecasts are made. For the operational purpose, only one set of streamflow 299 

forecasts is made using a fixed QPF duration for a given event (Table A.3). Performance of these 300 

single pieces of streamflow forecast of long lead times deserves our attention because they are to 301 

provide a prediction of the entire flood event and can be taken as inputs for floodplain inundation 302 

forecasts. A DHSVM baseline run (driven by ST4) for each storm event was compared with the 303 

forecasted streamflow outputs to assess the streamflow forecasting skill under different QPF 304 

durations. The skill statistics that were employed include R2, NSE, RB of the mean streamflow. 305 

Additionally, relative root mean square error (RRMSE) and RB of peak streamflow are also used 306 

to the instantaneous streamflow system skill evaluation. 307 

3) Inundation 308 

Forecasted inundation timeseries maps were generated for all scenarios reported in Table 309 

3. The skill of the forecasted floodplains during these three flood events was assessed against 310 

corresponding baseline floodplain simulated by TRITON using ST4-driven DHSVM streamflow. 311 

Additionally, forecasted floodplains driven by DHSVM with different maximum QPF durations 312 

(12, 24, and 72 h) were also simulated to evaluate the potential benefit of increasing the maximum 313 

QPF duration in operational streamflow forecasting. The metrics used in Wing et al. (2017) were 314 
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adopted to quantify the skill of the forecasts (see Table A.1), including the hit rate (HR), the false 315 

alarm rate (FAR), the critical skill index (CSI), and the error bias (EB). 316 

4. Results 317 

a. Skills of forecasted precipitation 318 

As the duration of forecasted precipitation increases, the QPF skill statistics generally tend 319 

to worsen. The QPF skill statistics compared against ST4 QPE for the three extreme weather events 320 

in Brays Bayou are shown in Fig. 4. FAR, FB, and CSI generally perform worse with an increased 321 

QPF duration. However, longer QPF duration leads to higher HR skill due to the probability of 322 

rain accumulating for each grid as time passes. Fig. 5 compares the forecasted precipitation amount 323 

in mm/(6hr) with the ST4 QPE under different durations of interest (i.e., 12, 24, 48, and 72 h). The 324 

results indicate that the longer the QPF duration, the larger the error of the QPF rates. 325 

 326 
Fig. 4. (a) Hit rate (HR), (b) false alarm rate (FAR), (c) frequency bias (FB), and (d) critical success index 327 
(CSI) of QPF data for the dates of the Memorial Day flood, Tax Day flood, and Hurricane Harvey. 328 
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 329 
Fig. 5. Discrepancy in precipitation rates for the three case flood events by QPF duration: (a) 6 h, (b) 12 h, 330 
(c) 24 h, and (d) 72 h duration. Each data point represents 6-h accumulated precipitation.  331 

QPF tend to overestimate the storm duration but underestimate the precipitation rates. The 332 

FB values are over 1 for the three events under all the QPF durations and tend to increase as the 333 

duration increases (Fig. 4). The results in Fig. 5 show that the QPF tend to underestimate the 334 

precipitation rate, and such underestimation increases as the rain rate increases. These findings 335 

agree with previous studies by Brown et al. (2012) and Sukovich et al. (2014), indicating that the 336 

NWS QPF underestimated rainfall during extreme precipitation events. Also, Chong et al. (2021) 337 



19 

 

indicates that the low skills in convective parametrization, and coarse resolution of modeling grids 338 

within NWP models might be causes of this phenomenon. 339 

The QPF shows higher performance on forecasted rainfall totals as QPF duration 340 

increasesðeven though the QPF forecast skill metrics with regard to spatial and temporal 341 

distribution decreased. The RB of the rainfall totals of the QPF under 6, 12, 24, and 72 h durations 342 

for Hurricane Harvey are shown in Fig. 6. Using Hurricane Harvey as an example, there are notable 343 

underestimations in the forecasts made before the precipitation peak (Aug 27 3:00 am - 6:00 pm). 344 

However, this underestimation gets smaller as the QPF duration increases (Fig. 6c). Additionally, 345 

the PPTB also narrows as the QPF duration increases (Appendix Table A.4). Similar patterns were 346 

found for the Tax Day Flood, but not for the Memorial Day Flood. 347 

QPF during the Memorial Day flood have the worst skill, while the Tax Day flood and 348 

Hurricane Harvey have comparable skill statistics (Fig. 4). This is likely due to the Memorial Day 349 

flood occurring over a short time period (9 h), while the other two events were more prolonged 350 

(24 h for the Tax Day flood and 108 h for Hurricane Harvey). In addition, the QPF rates for 351 

Hurricane Harvey are better than for the Tax Day flood (Fig. 5). High uncertainty with regard to 352 

forecasting convective events might be a reason for the lower skill of the Tax Day flood QPF (Sun 353 

et al., 2014; Chong et al., 2021). Furthermore, the higher spatial resolution of the 2017 QPF (as 354 

compared to that in 2016) might also play a role in this comparison.  355 

 356 
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 357 

Fig. 6.  Relative Bias (RB) of the QPF at different times under 6h, 12h, 24h, and 72h QPF 358 

durations during (a) the Memorial Day flood; (b) the Tax Day flood; and (c) Hurricane Harvey 359 
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b. Skills of forecasted streamflow 360 

For the instantaneous streamflow forecasts, the streamflow forecast skills generally worsen 361 

as the duration increases (Fig. 7), which is consistent with the precipitation QPF statistics. In 362 

addition, streamflow forecasts show higher skill in Hurricane Harvey and the Tax Day flood than 363 

the Memorial Day flood, similar to QPF skill evaluation results.  364 
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 365 

Fig. 7. Skill statistics for the instantaneous streamflow forecasts by QPF duration when compared with the 366 
baseline model run for each storm event for gages 08074810 and 08075000: (a) R-Squared (R2), (b) Nash367 
Sutcliffe Efficiency (NSE), (c) Relative Bias (RB), (d) Relative Root Mean Square Error (RRMSE), and 368 
(e) Peak Relative Bias (Peak RB). 369 
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The mean streamflow is underestimated for almost all QPF durations during the three 370 

events, as indicated by comparisons between the forecasted mean streamflow and the baseline 371 

modeled streamflow (Fig. 8). This is attributed to the negative bias of QPF, as discussed in Section 372 

4a. This negative bias is exacerbated as the QPF duration increases (Fig. 7(c) and Figure 8). This 373 

is because the streamflow forecasts are more affected by the accumulation of the QPF errors over 374 

time, while the benefit of initializing the model using the ST4 QPE data becomes less significant 375 

(the streamflow forecasts are generated with ST4 QPE prior to the forecasted precipitation).  376 

 377 
Fig. 8. Forecasted mean streamflow compared with baseline mean streamflow for USGS stations (a) 378 

08074810 and (b) 08075000. 379 

In instantaneous streamflow forecasts, only hydrography segments within the period of the 380 

QPF duration are used (Fig. A3). The streamflow forecast performance within the period of a QPF 381 

duration rests on the accuracy of the precipitation rate estimated for this period. As the QPF 382 

duration increases, the underestimation of precipitation rates in QPF gets exacerbated (Fig. 5). 383 

Therefore, the evaluation skills of instantaneous streamflow forecasts are in consistence of the 384 

QPF forecast skills.  385 


